SCHEME OF COURSE WORK

Course Details:

Course Title	Mathematics II								
Course Code	15BM1102	15BM1102 L T P C 3104							
Program:	B.Tech.								
Specialization:	Information Technology	Information Technology							
Semester	II Semester								
Prerequisites	Basic formulae of differentiation and integrations.								
	• Basic terminology and elementary operations on Matrices and properties.								
	Basic concept of Partial Differentiation.								
Courses to which	h it is a prerequisite :	: For all Engineering Courses							

PROGRAM OUTCOMES:

A graduate of Information Technology Engineering will be able to

- PO1: Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information Technology to solve problems in different domains.
- PO2: Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
- PO3: Design and develop software components, patterns, processes, Frameworks and applications that meet specifications within the realistic constraints including societal, legal and economic to serve the needs of the society
- PO4: Design and conduct experiments, as well as analyze and interpret data PO5: Use

appropriate techniques and tools to solve engineering problems.

- PO6: Understand the impact of Information technology on environment and the evolution and importance of green computing.
- PO7: Analyze the local and global impact of computing on individual as well as on society and incorporate the results in to engineering practice.
- PO8: Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
- PO9: Function effectively as an individual, and as a member or leader in diverse and multidisciplinary teams.
- PO10: Communicate effectively with the engineering community and with society at large.
- PO11: Understand engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects.
- PO12: Recognize the need for updating the knowledge in the chosen field and imbibing learning to learn skills.

Course Outcomes (COs):

1	Solve the linear system of equations analytically and compute Eigen values and eigenvectors of
	a square matrix.
2	Numerically solve linear system of equations and compute eigen values and eigenvectors of a square matrix.
3	Discuss and demonstrate difference equations to discrete systems.
4	Calculate Fourier series and Fourier transforms for certain functions.
5	Classify and solve partial differential equations and apply it to heat flow and wave propagation problems.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO-1	3	3			3										
CO-2	3	2			2										
CO-3	3	3													
CO-4	3	3													
CO-5	3	3													

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Assessment	Assignment / Quiz / Seminar / Case Study / Mid-Test / End					
Teaching-Learning and						
	Evaluation					

Week	TOPIC / CONTENTS	Cour	Sa ple questions	TEACHING- LEARNING	Assessment Method &
		Outc		STRATEGY	Schedule
		omes			~
1	Solve the linear system of equations analytically and compute Eigen values and eigenvectors of a square matrix.	CO-1	1) \Box 113 \Box	Lecture / Problem solving	Assignment (Week 2 - 4) / Quiz-I (Week -8)/ Mid- Test 1 (Week 9)
2	Numerically solve linear system of equations and compute eigen values and eigenvectors of a square matrix.	CO-2	1) Using factorization method _z to solve the equations $3 + 2y + 7z = 4$, $2 + 3 + = 5$, $3 + 4 + = 7$ the 2) Gauss-Seidel method to solve the	Lecture / Problem solving	Assignment (Week 2 - 4)/ Quiz -I (Week -8)/ Mid- Test 1 (Week 9)

			equations $2 + \cancel{x} \neq 6 \cancel{y} = 9$, $8\cancel{z} + 3 + 2\cancel{x} = 13\cancel{y}$ + $3\cancel{z} + 3\cancel{z} = 7\cancel{x} + 2\cancel{x} = 13\cancel{y}$ 3) Using Rayleigh's power method, find the largest eigen value and corresponding eigen vector of $A = \begin{bmatrix} 2 & -1 & 0 \\ & = -1 \end{bmatrix}$ 0 = -1 = 2		
3	Difference operators (forward, backward and shift operators)	CO-3	1) Find $\Delta^2 \left(x^2 + 5x + 6 \right)$	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Assignment (Week 2 - 4)/ Quiz -I (Week -8)
4	Mid-Test 1				
5	Linear difference equations and it's complete solution. Rules for finding the complementary function and complete integral, Deflection of a loaded string.	CO-3	1) Solve the difference equation $y_{x+2} - 2y_{x+1} + y_x = 2_x$	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
6	Calculate Fourier series and Fourier transforms for certain functions.	CO-4	 Find the Fourier Series for f □ x □ □ e^{□x} in 0 □ x □ 2□. Find the Fourier Series for f □ x □ □ x² in 0 □ x □ 2□. Find the Fourier Transform of □1, if x □1 f □x □ □ □ □ □0, if x □1 	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
7	Classify and solve PDE and apply it to heat flow and wave propagation problems.	CO-5	 Find the partial DE for z = f(x+) ∉ (-g byeli@ninating f and . Solve ∇ V = 0 subject to 	Lecture / Problem solving	Mid-Test 2 (Week 18) / Quiz -II (Week -17)/ Assignment (12- 14)
8	Mid-Test 2				
9	END EXAM				